


Asteroid sizes constrained by thermophysical model and stellar occultations

Antoine Choukroun

## Methodology:



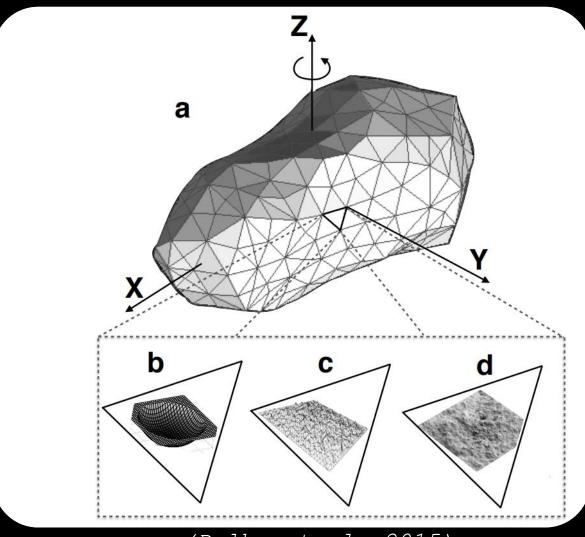
- Yarkovsky and YORP effects
- Planning and operation of asteroid space missions information
- Solar System formation
- Planetary defense
- •
- •
- •

1

Constructing asteroid models based on dense lightcurves

2

Scaling the models with thermal data, to obtain precise sizes


3

Scaling the models with stellar occultations

4

Comparing sizes from both techniques and from the literature

# Convex Inversion Thermophysical Model (CITPM):



Convex Inversion (Kaasalainen & Torppa, 2001; Kaasalainen et al., 2001)

+

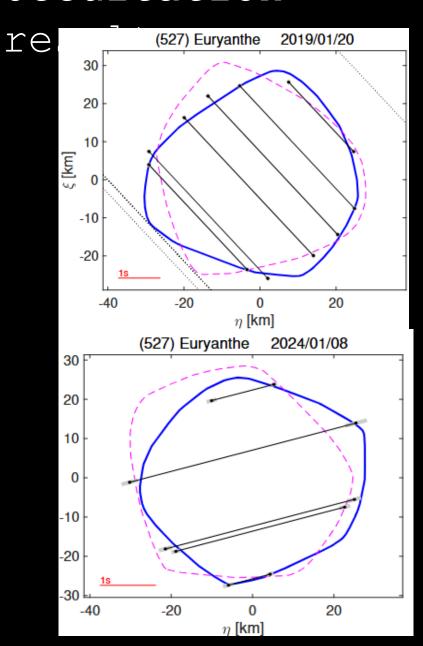
Thermo-Physical Model (TPM) (Lagerros et al. 1996; Lagerros et al. 1997; Lagerros et al. 1998)

$$\chi_{tot}^2 = \chi_{visible}^2 + \lambda_{ir} \times \chi_{ir}^2$$

(Delbo et al. 2015)

#### Data set:

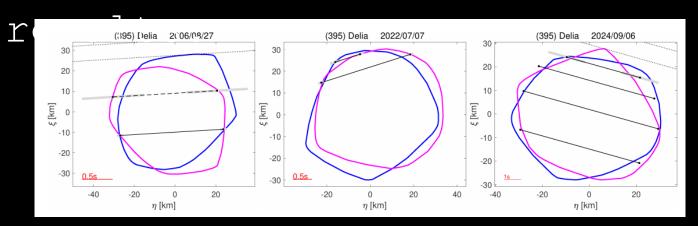
| Target           | Taxon. | $N_{lc}$ | $N_{app}$ | $N_{IR}$ | $N_{\text{WISE}}$ | Nocc (Npos)   |
|------------------|--------|----------|-----------|----------|-------------------|---------------|
| (215) Oenone     | S      | 78       | 8         | 53       | 22                | 1(2)          |
| (279) Thule      | X      | 107      | 13        | 33       | 15                | 3(5, 2, 4)    |
| (357) Ninina     | CX     | 89       | 7         | 38       | 10                | 4(7, 2, 4, 7) |
| (366) Vincentina | Ch     | 69       | 9         | 67       | 21                | 3(6, 6, 2)    |
| (373) Melusina   | C      | 31       | 6         | 40       | 11                | 1(2)          |
| (395) Delia      | Ch     | 68       | 7         | 20       | 11                | 3(3, 2, 2)    |
| (429) Lotis      | C      | 79       | 8         | 41       | 11                | 1(2)          |
| (527) Euryanthe  | Cb     | 90       | 6         | 35       | 19                | 2(6, 5)       |
| (541) Deborah    | В      | 44       | 6         | 48       | 30                | 3(2,4,6)      |
| (672) Astarte    | S      | 62       | 8         | 24       | 16                | 1(4)          |
| (814) Tauris     | C      | 101      | 11        | 19       | 8                 | 1(5)          |
| (859) Bouzareah  | X      | 49       | 7         | 39       | 12                | 3(2,3,4)      |
| (907) Rhoda      | Xk     | 92       | 9         | 46       | 22                | 1(2)          |
| (931) Whittemora | M      | 60       | 9         | 49       | 24                | 3(3, 2, 2)    |
| (1062) Ljuba     | C      | 132      | 9         | 27       | 14                | 2(2, 2)       |


**Notes.** 'Taxon.' refers to the taxonomic type.  $N_{lc}$  is the number of dense light curves for each target registered at  $N_{app}$  apparitions,  $N_{IR}$  is the number of all infrared data points, and  $N_{WISE}$  is the number of data points obtained by WISE spacecraft.  $N_{occ}$  represents the number of stellar occultation events, with the number of positive chords for each event shown in parentheses. Taxonomic types come from Tholen (1984), Bus & Binzel (2002) and from Vereš et al. (2015).

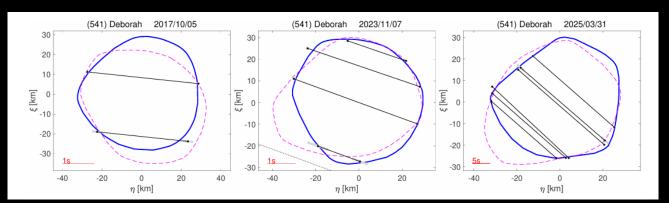
### Diameters from the

| Asteroid         | $\mathrm{D}_{\mathrm{min}}$ | $\mathrm{D}_{\mathrm{min}}$ | $D_{max}$          | $D_{max}$ | $\overline{\mathrm{D}}$ |
|------------------|-----------------------------|-----------------------------|--------------------|-----------|-------------------------|
|                  | (km)                        | reference                   | (km)               | reference | (km)                    |
| (215) Oenone     | $35.21 \pm 0.4$             | [1]                         | $43.69 \pm 4.370$  | [2]       | $41.82 \pm 0.10$        |
| (279) Thule      | $113.04 \pm 3.11$           | [3]                         | $136.78 \pm 7.105$ | [4]       | $122.62 \pm 2.05$       |
| (357) Ninina     | $92.54 \pm 3.015$           | [4]                         | $124.11 \pm 0.86$  | [5]       | $113.77 \pm 0.61$       |
| (366) Vincentina | $83.84 \pm 8.38$            | [2]                         | $98.25 \pm 4.638$  | [4]       | $86.65 \pm 0.30$        |
| (373) Melusina   | $84.55 \pm 8.45$            | [2]                         | $107.74 \pm 5.815$ | [4]       | $95.94 \pm 0.61$        |
| (395) Delia      | $44.19 \pm 0.45$            | [5]                         | $61.49 \pm 0.7$    | [5]       | $50.16 \pm 0.34$        |
| (429) Lotis      | $54.2 \pm 4.56$             | [6]                         | $89.69 \pm 38.25$  | [5]       | $69.79 \pm 0.68$        |
| (527) Euryanthe  | $48.55 \pm 13.62$           | [7]                         | $58.56 \pm 0.62$   | [5]       | $53.99 \pm 0.27$        |
| (541) Deborah    | $49.04 \pm 17.985$          | [8]                         | $65.60 \pm 3.801$  | [4]       | $55.42 \pm 0.31$        |
| (672) Astarte    | $27.49 \pm 2.75$            | [2]                         | $35.58 \pm 0.495$  | [9]       | $33.37 \pm 0.33$        |
| (814) Tauris     | $98.77 \pm 33.9$            | [6]                         | $122.26 \pm 1.819$ | [4]       | $111.9 \pm 0.97$        |
| (859) Bouzareah  | $65.21 \pm 2.758$           | [4]                         | $86.02 \pm 1$      | [5]       | $70.28 \pm 0.39$        |
| (907) Rhoda      | $62.73 \pm 1.7$             | [10]                        | $98.01 \pm 32.58$  | [11]      | $80.91 \pm 0.30$        |
| (931) Whittemora | $40.62 \pm 2.02$            | [5]                         | $63.51 \pm 11.434$ | [4]       | $50.1 \pm 0.42$         |
| (1062) Ljuba     | $51.02 \pm 0.887$           | [9]                         | $63.16 \pm 12.63$  | [2]       | $54.91 \pm 0.52$        |

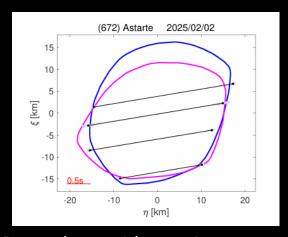
Notes. Data extracted from the MP3C database (https://mp3c.oca.eu/).  $D_{min}$  and  $D_{max}$  are the minimum and the maximum published value, respectively, and  $\overline{D}$  is the error-weighted mean diameter from all the literature values computed as follows:  $\overline{D} = \sum (\frac{D_i}{\sigma_i^2}) / \sum (\frac{1}{\sigma_i^2})$ . The uncertainties were evaluated with:  $\sigma_{\overline{D}} = \sqrt{1/\sum (\frac{1}{\sigma_i^2})}$ . References: [1] Masiero et al. (2014), [2] Alí-Lagoa et al. (2018), [3] Usui et al. (2011), [4] Ryan & Woodward (2010), [5] Masiero et al. (2012), [6] Nugent et al. (2016), [7] Masiero et al. (2020), [8] Masiero et al. (2017), [9] Masiero et al. (2011), [10] Tedesco et al. (2002), [11] Masiero et al. (2021).


### Occultation



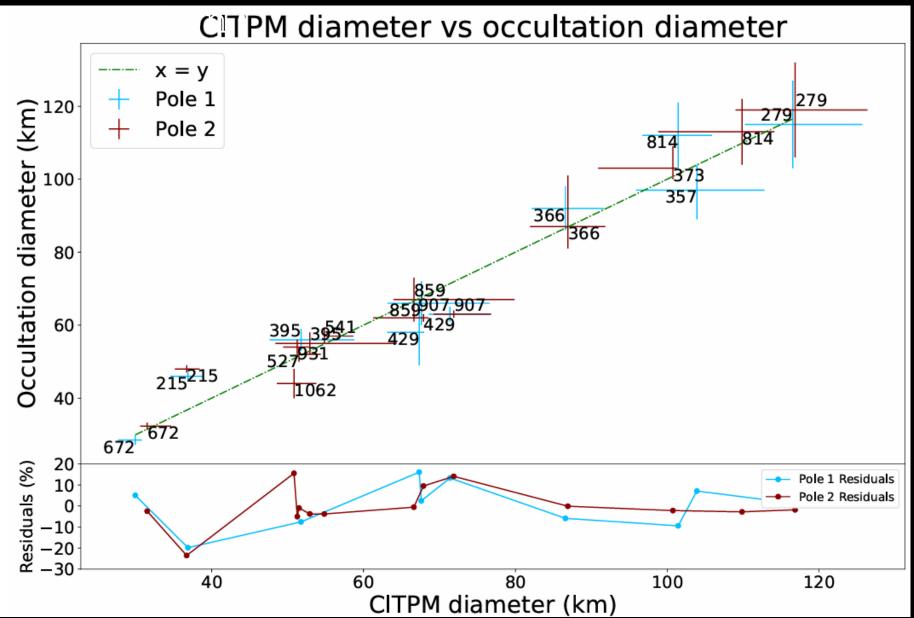

| Target           | Spin solution | D                | D RMS       |
|------------------|---------------|------------------|-------------|
|                  |               | (km)             | (km)        |
| (215) Oenone     | 1             | $46 \pm 1$       | 1           |
|                  | 2             | $48 \pm 1$       | 1           |
| (279) Thule      | 1             | $115 \pm 12$     | 12          |
|                  | 2             | $119 \pm 13$     | 13          |
| (357) Ninina     | 1             | 97 <sup>+7</sup> | 6           |
|                  | 2             | $113 \pm 11$     | 11          |
| (366) Vincentina | 1             | $92 \pm 6$       | 5           |
|                  | 2             | 87 +14           | 6           |
| (373) Melusina   | 1             | 99 ± 8           | 8           |
|                  | 2             | $103^{+6}_{-3}$  | 3           |
| (395) Delia      | 1             | $56 \pm 3$       | 3           |
|                  | 2<br>1        | $55 \pm 3$       | 3           |
| (429) Lotis      | 1             | $58 \pm 9$       | 9           |
|                  | 2<br>1        | $62 \pm 1$       | 1           |
| (527) Euryanthe  |               | $53 \pm 6$       | 6           |
|                  | 2             | $52 \pm 2$       | 2<br>5<br>2 |
| (541) Deborah    | 1             | $60 \pm 5$       | 5           |
|                  | <b>2</b><br>1 | $57 \pm 2$       |             |
| (672) Astarte    |               | $28.5 \pm 1.3$   | 1.3         |
|                  | 2<br>1        | $32.3 \pm 1.0$   | 0.9         |
| (814) Tauris     |               | $112 \pm 9$      | 9           |
| (0.50) P         | 2<br>1        | $113 \pm 9$      | 9           |
| (859) Bouzareah  |               | $66 \pm 6$       | 6           |
| (007) DI - I     | 2             | $67 \pm 6$       | 6           |
| (907) Rhoda      | 1             | $63 \pm 2$       | 2           |
| (021) 3371 1     | 2             | $63 \pm 1$       | 1           |
| (931) Whittemora | 1             | $49 \pm 5$       | 5           |
| (10(0) I !!-     | 2             | 54 ± 2           | 2           |
| (1062) Ljuba     | 1             | $41 \pm 4$       | 4           |
|                  | 2             | $44 \pm 4$       | 4           |

**Notes.** For each target and pole solution presented in Table 4, the diameter of the equivalent volume sphere is given, together with its best estimate of uncertainty, influenced by the uncertainty of both occultation timings and the shape model itself. The last column contains the formal RMS uncertainty of the occultation fit only (see text in Section 4.2 for details). Solutions preferred by occultations are marked with boldface.

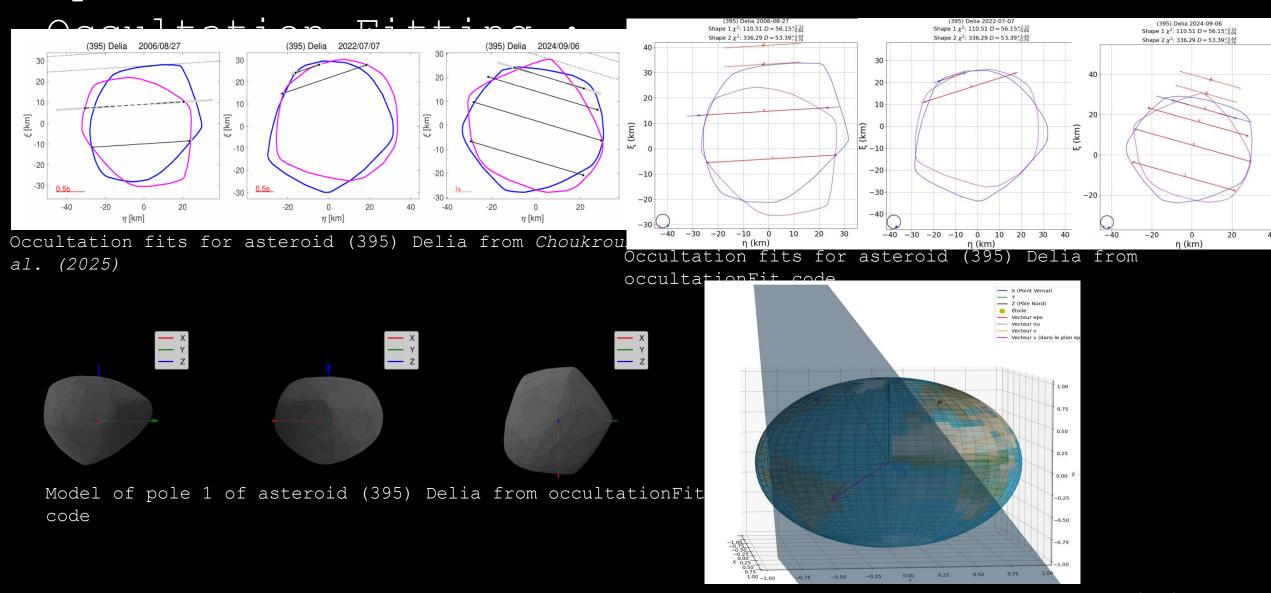

### Occultation



Occultation fits for asteroid (395) Delia Diameter from pole solution 1 :  $56 \pm 3$  2 :  $53 \pm 3$ 




Occultation fits for asteroid (541) Deborah Diameter from pole solution 2 :  $57 \pm 2$ 




Occultation fits for asteroid (672) Diameter from pole solution 1 :  $28.5 \pm 1.3$  2 :  $32.3 \pm 3$ 





# Open-Source Software for Stellar



Reconstruction of the observation 2024/09/06 of (39

#### Conclusions:

#### Take-home points:

- Only high-quality data was used (dense lightcurves, WISE data, no saturated or partially saturated data points...).
- Two techniques for shape modelling (convex inversion and CITPM) and for scaling (CITPM and occultations) were used.
- Modelled targets had not been well studied before.
- Accurate and well-constrained spin solutions were found, as well as good shape model.
- Precise and well-constrained size values were determined using CITPM, in agreement with occultation results.
- Results available in: Asteroid sizes determined with a thermophysical model and stellar occultations Choukroun et al. (2025)