
Optimal exposure time for detecting events with small dip depth (dip depth < 1,5 mag)

The following questions will be examined:

- How many measuring points are needed for events with small signal to get a positive event calculated?
- What S/N ratio is required?
- Which integration time is needed?
- Is observation feasible?

General procedure:

- Determine the necessary S/N based on the expected dip.
- Estimate the necessary exposure time based on experienced data
- Check whether the exposure time is compatible with the duration of the occultation

The diagram shows the minimum number of measurement points depending on the S/N of the dip for the event to be recognized as positive

(data was generated using Pyote)

This data can be represented using a negative power function.

Below an S/N of 2, the number of data points required increases dramatically.

Since time errors for SN <3 are greater than integration time

S/N should be > 3 for dip

Better S/N (Dip) < 4 to 5

An example:

Occultation of UCAC4 530-049269 by Misa on February 1, 2024:

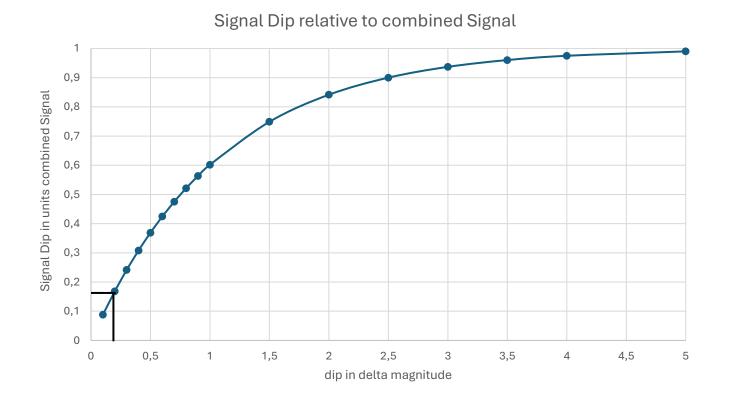
Data for planning the observation

```
Probability 100%

Mag*=12,9

Mag Asteroid = 14,4

Mag_Comb = 12,7


delta_mag_Dip = 0,2

Duration max 7,9s

Min Duration for planning 3,8s

Height of object 51° → expected good Seeing
```

1. Determine the ratio S/N(star) to achieve S/N(dip) 4.5 for a dip with 0,2mag

Read off the diagram at 0.2 mag -> dip approx. 17% star intensity

 \rightarrow S/N Dip = 0,17*SN Stern

 \rightarrow S/N > 4,5 for Dip:

 \rightarrow S/N Star > 4,5/0,17 = 26

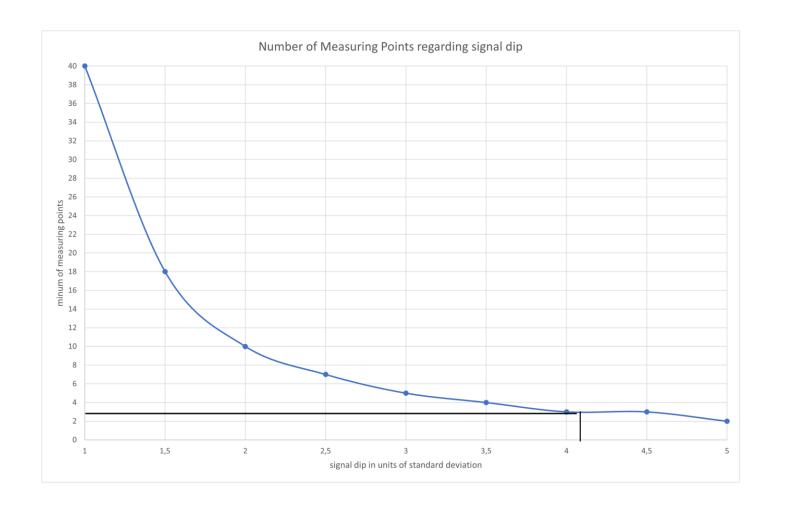
In case only SN 20 could be achieved

→ min SN(Dip) = 3,4

2. Step: Determine the exposure time required to achieve an S/N star of at least 20.

1			Stern	Planetoid	kombiniert	delta mag	Dauer	Belicht	S/N comb	S/N dip
26	Lowell	20.01.2024	13,8	16,7	13,7	3	0,9	150	4,4	4,:
27	Lederle	21.01.2024	14,2	15,4	13,9	1,5	3	200	6,9	
28	Misa	01.02.2024	12,9	14,4	12,7	0,2	5	100	7,5	1,4
29	Odysseus	29.02.2024	15,4	15,8	14	1	27,9	500	7,6	4,2
30	Tama	02.03.2024	9,3	14,3	9,3	5,1	1,6	10	11,9	
31	Theopolda	05.03.2024	12,2	13,9	12	1,9		200	19,3	1
32	Clementina	03.04.2024	15,4	15,7	14,8	1	5,9	500	7,38	3,3
33	Leonteus	30.04.2024	14	16,4	13,9	2,5	4,8	750	4	
34	Giza	05.06.2024	12	18,5	12	6,5	2,6	100	4,1	
35	Isergina	16.06.2024	15,3	15,4	14,6	0,8	4,5	500	5,7	2,
36	Bronislawa	24.06.2024	14,7	14,4	13,8	0,6	4,8	300	5,66	2,6
37	Bronislawa	24.06.2024	14,7	14,4	13,8	0,6	4,8	500	5,66	2,6
38	2003 YM9	21.07.2024	12,8	20,5	12,8	7,7	0,5	40	4,11	4,1

From the experience table: At 100 ms, an S/N ratio of approximately 10 can be expected.


Theopolda SN ca 19,3 at 200ms

2003 YM9: SN=4,1 at 40ms

Table shows linearity S/N relative exposure time: SN 0,1/ms Basis to calculate the expected integration time

Event	Mag Star	Integration Time	Achieved S/N	S/N / Integration Time
Theopolda 5.3.2024	12	200	SN Star 19,3	9,7/ms
2003 YM9 21.7.2924	12,8	40	SN Star 4,1	10,2/ms
Now to observe: Misa	12,9	200	SN Star 20 SN Dip 3,4	About 10/ms
Option 2	12,9	250	SN Star 25 SN Dip 4,25	About 10/ms

3. Check feasibility Measurement :

Max event duration 7.8s:
Safety factor 0.5 if
not on center line
→ Maximal Duration ca 4,0 s

Personal experience shows that SN_Star=20 is the upper limit.

250ms SN_Star = 25

 \rightarrow SN Dip = 25*0,17 = 4,25

Diagram:

 $SN 4,25 \rightarrow min. 3 Measuring Points$

Expected measurement points:
Tmin Duration/3* T_integr =
3800ms/750ms = Reserve Factor 5

 \rightarrow ok!

Conclusion and hints:

- S/N of Dip should be at least 3 better 4 to 5
- Integration time is not always the limiting factor, but rather the maximum achievable S/N ratio
- My personal experience shows that, at best, an S/N of 20 to 25 can be expected from the star (my equipment and observation site)
- calculating needed integration time based in experience table
- Check feasibility with SN from star of max. 20 by using an experience table

→ Gather empirical data by creating a table of results from the measurements taken in order to estimate integration times.

The data table could contain following parameters

Object Parameter	Observation parameter	Measueremnts parameter
Asteorid Number	Datum event	Integration time
Mag star	Star height above horizon	Duration measured
Mag Asteorid	Sun height	Precision time achieved
Mag Comb	Moon height	Pos or negative
Duration theory	Moon distance	Camera type, Gain, Binning
Probability		

Optimum exposure time for best time precision

Thank you for your attention

Martin Gutekunst Sternwarte Eberfing Germany